Mars General Circulation Model Intercomparison

Participating Models:

GFDL John Wilson
Hokkaido Yoshiyuki Takahashi
LMD Francois Forget
Caltech/JPL (WRF) Michael Mischna
CCSR/NIES Takeshi Kuroda
York University (GM3) Youseff Moudden
MPI (MAOAM) Alex Medvedev

Model	Horizontal Resolution	Vertical Levels	Dust Visible optical properties		
GFDL	60x36	22	w=0.92 g= 0.65		As for LMD
LMD	65x49	32	w=0.92 g= 0.55		3 IR channels
Hokkaido	120x60	48	Ockert-Bell		As for LMD
MAOAM	32x36	70/100 **		No CO ₂ cycle	
CCSR	64x32	33	Ockert-Bell		9 visible 10 IR bands
WRF	64x36	25	w=0.92 g= 0.55		Dust IR: Haberle
York	40x20	102		No CO ₂ cycle	
Ames	60x36 ??	24	Ockert-Bell		

^{**} Log-pressure vertical coordinate

Requested Model Data

Diurnally-averaged U, V, and T fields on model levels (optional diurnal composites: for thermal tides)

Diurnally-composited Ps, Ts and surface stress fields (12-24x/sol)

Model data centered on 3 Seasons:

$$L_s$$
= 90, 180, 270

3 Dust Cases:

 τ = 0.2, 1.0 and "mgs scenario"

zonally uniform dust; ideally with vertical distribution given by Conrath parameter 0.01

Aerosol optical properties vary between models.

Aims

Assess qualitative aspects of the zonal mean circulation; winds, temperature and mass transport streamfunction

Influence of horizontal and vertical resolution; particularly for surface stress.

Impact of different radiation parameterizations

Surface Pressure: 2 models lacked CO₂ cycle

Surface Temperature: 2 models didn't enforce T_{CO2} for surface

temperatures

1 model had very strong solar heating: evidently from solar absorption by dust. This had a major influence on all zonally-averaged fields.

1 model apparently had a deeper dust distribution than suggested

Surface stress magnitudes are quite variable in strength and location

Models all indicate a warm bias in polar temperatures during the L_s =180 season with respect to MGS TES observations.

$$o \tau = 0.2$$

*
$$\tau = 1.0$$

Semidiurnal Surface Pressure Amplitude

Tide amplitude vs dust column optical depth:

Tide is a measure of globally integrated thermal forcing due to surface heat flux and absorption by dust

Results from model intercomparison; 2003 Granada meeting

Summary of Semidiurnal Tide Amplitude

3 Seasons and 2 dust loadings

Average Surface Temperature Ls= 90

Surface Temperature Range Ls= 90 120 100 Temperature 80 60 -GFDL -LMD 40 japan MAOAM -CCRS 20 WRF -*--York -90 -60 -30 30 60 90 Latitude

Influence of Dust on Surface Temperature

$$\Delta T_{\rm sfc}$$
: $T_{\rm sfc}(\tau=1)$ - $T_{\rm sfc}(\tau=0.2)$
 $L_s=270$

Dust increases minimum (am) temperature

Dust decreases maximum (pm) temperature

weak positive greenhouse effect: 3-5 K

Dust influence is a function of surface thermal inertia: strongest when TI is smallest.

Equatorial Temperature: $L_s=90$ Tau= 0.2

Equatorial Temperature: $L_s=270$ Tau= 0.2

Equatorial Temperature: $L_s=270$ Tau= 1.0

Equatorial Temperature: $L_s=270$ Tau= 0.2

10-

Temperature and Streamfunction

Streamfuncton: 108 kg/s

Equatorial Streamfunction: $L_s=90$ Tau= 0.2

Temperature and Streamfunction

 $L_s = 270; \quad \tau = 1.0$

Equatorial Streamfunction: $L_s=90$ Tau= 0.2 & 1.0

Equatorial Streamfunction: $L_s=270$ Tau=0.2 0.1 → GFDL **→** LMD 0.2 🕶 japan **→** MAOAM Pressure (mb) **→**CCRS 0.5 <mark>→</mark> WRF -+- York 2 3 10 -50 50 100 1 Streamfunction (10⁸ kg/s) 150 200

Thermal Tides

Solar forcing; heat transport from the surface absorption of solar radiation by aerosols

Propagation: Influence of zonal mean circulation

Dissipative process: provides a means of wave influence on the zonal mean circulation

First-order agreement between all models except MAOAM:

Large amplitude tide forcing and dissipation in the MAOAM model is evidently responsible for strong polar temperatures

Surface Stress

Examined plots of the spatial distribution of the maximum surface stress in a diurnal composite time series

Surface stress will vary with model horizontal and vertical resolution and boundary layer parameterization

